The Galois theory of infinite purely inseparable extensions
نویسندگان
چکیده
منابع مشابه
Hopf Galois structures on primitive purely inseparable extensions
Let L/K be a primitive purely inseparable extension of fields of characteristic p, [L : K] > p, p odd. It is well known that L/K is Hopf Galois for some Hopf algebra H, and it is suspected that L/K is Hopf Galois for numerous choices of H. We construct a family of K-Hopf algebras H for which L is an H-Galois object. For some choices of K we will exhibit an infinite number of such H. We provide ...
متن کاملScaffolds and integral Hopf Galois module structure on purely inseparable extensions
Let p be prime. Let L/K be a finite, totally ramified, purely inseparable extension of local fields, [L : K] = p, n ≥ 2. It is known that L/K is Hopf Galois for numerous Hopf algebras H, each of which can act on the extension in numerous ways. For a certain collection of such H we construct “Hopf Galois scaffolds” which allow us to obtain a Hopf analogue to the Normal Basis Theorem for L/K. The...
متن کاملPurely Infinite Corona Algebras and Extensions
We classify all essential extensions of the form 0 → B → D → C(X) → 0 where B is a nonunital simple separable finite real rank zero Z-stable C*algebra with continuous scale, and where X is a finite CW complex. In fact, we prove that there is a group isomorphism Ext(C(X),B) → KK(C(X),M(B)/B).
متن کاملHomotopy Theory of Hopf Galois Extensions
We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all H-Galois extensions up to homotopy equivalence in the case when H is a Drinfeld-Jimbo quantum group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1965
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1965-11422-7